Black Belt /) g

~ Sync Threads
Automatically

Simplify the management of .NET component concurrency

by using automatic thread synchronization to prevent deadlocks.

Technology Toolbox

¥ VB.NET

o C#

J SQL Server 2000
Q ASP.NET

Q XML

Q VB6

¥ Other:

.NET Framework

Go Online!

Use these Locator+ codes at
www.visualstudiomagazine.com
to go directly to these related
resources.

Download

VS0209BB Download the code for
this article, which includes a
sample component that uses a
synchronization domain and a test
client, both provided in C# and
VB.NET.

Discuss

VS0209BB_D Discuss this article in
the .NET forum.

Read More

VS0209BB_T Read this article
online. It includes inline code in
both C# and VB.NET.

VS0202BB_T Black Belt, “Demystify
.NET App Domains and Contexts,”
by Juval Lowy

N020213CS “Make Synchronization
Automatic” by Juval Lowy

58

I heintroduction of multithreadinginto your
VBG6 application opens up a Pandora’s box

of synchronization and concurrency manage-
ment issues. You have to worry about threads
deadlocking while contesting for the same re-
sources. You must synchronize access to objects
by concurrent multiple threads. And you have to
handle method re-entrance.

Your first step in tackling such issues is to
build thread-safe components by equipping them
with mechanisms that prevent multiple threads
from accessing them and corrupting the state of
the objects. This helps, but it still doesn’t pre-
vent deadlocks, which occur when thread T1,
which owns thread-safe resource R1, tries to
access thread-safe resource R2 justas R2’s owner,
thread T2, tries to access R1 (see Figure 1).
Multithreading defects are notoriously hard to
isolate, reproduce, and eliminate. They often
involve rare race conditions, and fixing one
problem often introduces another. Before
.NET, it was nontrivial to write robust, high-
performance, multithreaded code. You needed
a great deal of skill and discipline to succeed.

Enter NET, which aims at simplifying com-
ponent concurrency management. By default,
all. NET componentsexecute inamultithreaded
environment that allows concurrent access by
multiple threads. I'll showyouhow touse NET’s
automaticsynchronization, which lets you deco-
rate your component with an attribute and have
.NET manage concurrent access to the object.

Automaticsynchronization revolves around
intercepting calls coming into a component’s
context (see the Read More section in the
Go Online box for more information on app
domains and contexts). Components must be
context-bound to take advantage of .NET auto-
matic synchronization. This means you need to
constrain them to execute always in the same
context. These components must derive from
the ContextBoundObject class directly or indi-
rectly, and they must use the Synchronization

VISUAL STUDIO MAGAZINE

by Juval Lowy

attribute, defined in the System.Runtime.Re-
moting.Contexts namespace:

//CH#
using System.Runtime.Remoting.Contexts;
[Synchronization]
public class MyClass : ContextBoundObject
{

public MyClass(){}

public void DoSomething(){}

//other methods and data members

The Synchronization attribute, combined with
the ContextBoundObject base class, tells NET
to place the object in a context and associate it
with a lock. When a client on thread T1 tries to
access the object by calling a method on it (or
accessing a public member variable), the client
actually interacts with a proxy. .NET intercepts
the client access and tries to acquire the lock
associated with the object. If the lock isn’t owned
by another thread currently, NET acquires the
lock and accesses the object on thread T1. .NET

T1 T2
R1 R2
Owns
Access attempt -------- -

Figure 1 Multithreading Can Be Deadly. A
deadlock can occur when two or more threads
each owns a resource and is waiting for a re-
source owned by another thread. Deadlocks are
notoriously hard to resolve and often appear un-
predictably.

ine.com

SEPTEMBER 2002 + www.visualstudiomag.

B At T
’ App domain A A App domain B
|/ Context1 | Context3 | | Context5 |

synchronization domain locksall its objects from access by

other threads, even though the current thread in the

domain accesses only one object at a time.
Synchronization domains are context-independent

? o

and can include objects from multiple contexts. How-
ever, a synchronization domain is limited to a single app

/ 'Context 4
' Synchronization |

domain: Objects from differentapp domains can’tshare
asynchronization domain lock. A context can belong to

| domain
|

!

no more than one synchronization domain at a time, if

A

any. If a context belongs to a synchronization domain,
e | then all the objects in that context belong to that
synchronization domain (see Figure 2).

Figure 2 Synchronize Domains, Contexts, and App Domains. The .NET
Framework’s synchronization domains can save you from error-prone manual
thread synchronization. A synchronization domain is independent of context, but
is limited to a single app domain. A context belongs to one synchronization do-

main at most.

releases the lock and returns control to the client when the call returns
from the method. However, if another thread T2 were accessing the
object, then T1 would be blocked until T2 releases the lock. In fact,
all other threads are placed in a queue while the object is accessed by
one thread, so they get to access the object in order one at a time.

Avoid Deadlocks With Shared Locks
NET could have allocated one lock per context-bound object, but
that would have been inefficient. Objects can often share alock and
execute on the same thread—if by design the components are all
meant to participate in the same activity on behalf ofa client. In such
situations, allocating one lock per object would waste resources and
processing time, forcing .NET to do additional locks and unlocks
on every object access. Moreover, sharing locks among objects
would reduce the likelihood of deadlocks. If two objects interact
with each other and each has its own lock, two different clients on
different threads can use these objects. The objects would then
deadlock when they try to access each other. If the objects were to
share alock, only one client thread would be allowed to access them.
In .NET, a set of context-bound objects sharing a lock belongs to
asynchronization domain. Each domain has one lock; multiple threads
can’t make concurrent calls within the same synchronization domain.
When a thread accesses one object in a synchronization domain, that
thread can access the other objects in the domain. In fact, the

You need to decide how to associate a component
with a synchronization domain lock. You can choose
whether the object needs a lock at all, whether it can
share a lock with other objects, or whether it requires a
new lock. The SynchronizationAttribute class provides
a number of overloaded constructors, all accepting a
constant integer flag. Possible values for the flag are NOT_SUP-
PORTED, SUPPORTED, REQUIRED, and REQUIRES_NEW.
You use these constants to a/locate an object to a synchronization
domain relative to its creating client:

//CH#
[Synchronization(SynchronizationAttribute.REQUIRES_NEW)]
public class MyClass : ContextBoundObject

{}

The default constructor of the SynchronizationAttribute class
uses REQUIRED. .NET gives you three options. First, you can
place an object in its creator’s synchronization domain, in which
case the object shares a lock with its creator. Second, you can place
an object in a new synchronization domain, where the object has its
own lock and starts a new synchronization domain. Finally, you can
choose to not place the object in a synchronization domain, in
which case you get concurrent access and no lock.

Pick a Sync Domain

.NET determines an object’s synchronization domain at creation
time, based on the synchronization domain of its creator and the
constant value you choose for the Synchronization attribute (see
Table 1). That's because .NET uses a heuristic, which assumes

/Synchronization Does the object's creator have a Synchronization domain \
constant flag synchronization domain? determined by .NET

NOT SUPPORTED = The object will never be part of a synchronization domain, regardless of
whether its creator has a synchronization domain.

SUPPORTED Yes NET places the object in its creator’s synchronization domain.

SUPPORTED No The newly created object doesn't have a synchronization domain.

REQUIRED Yes NET puts the object in its creator’s synchronization domain.

REQUIRED No NET creates a new synchronization domain for the object.

REQUIRES NEW — .NET creates a new synchronization domain for the object, regardless of
whether its creator has a synchronization domain.

Table 1 Determine Your Object’s Synchronization Domain. .NET determines an object’s synchronization domain at creation time, based
on the synchronization domain of its creator and the constant value you provide for the Synchronization attribute. REQUIRED is the default for

the Synchronization Attribute class.

VISUAL STUDIO MAGAZINE SEPTEMBER 2002

www.visualstudiomagazine.com 59

Black Belt) "

e oL Synchronization domain
‘ Client A n——J—— ;
s Objectt

j Create
' ClientB »———3%—~0O-] Object2
e e S REQUIRED

Figure 3 Share a Lock With the Creator. Determine whether your
object requires a new synchronization domain based on the calling
pattern to your object. Consider this calling pattern, in which you con-
figure Object2 with synchronization set to REQUIRED, and you place
itin the same synchronization domain as its creator, Object1. Sharing
the lock with the creator when the two objects don't interact causes
Client B to wait until the first call is completed, even though it could
access the object safely.

that calling patterns, interactions, and synchronization needs
between objects usually resemble the relationship between an
object and its creator.

The various Synchronization attribute construction values give
you a variety of options. An object with synchronization set to
NOT_SUPPORTED never participates in a synchronization do-
main. The object must provide its own synchronization mecha-
nism. Use this setting only if you expect concurrent access, and you
want to provide your own synchronization mechanisms. But why
do that? Context-bound objects should leverage .NET’s compo-
nent services support.

An object with synchronization set to SUPPORTED shares its
creator’s synchronization domain if it has one, and has no synchro-
nization of its own if the creator doesn’t have one. Use SUP-
PORTED for the rare case when the component itself has no need
for synchronization, but downstream objects it creates do require it.
Components with synchronization SUPPORTED can propagate
the synchronization domain of their creating client to downstream
objects, which then share one synchronization domain instead of
having separate ones. This reduces the likelihood of deadlocks.

You most often set object synchronization to REQUIRED—
that's why it’s the SynchronizationAttribute class default. Always

Creator’s synchronization domain

R e
H

I

Client A ‘b— O Object
| ClientB »— Object2
Fah o s REQUIRES_NEW

New synchronization domain

Figure 4 Start a New Synchronization Domain. In this calling pat-
tern, having a synchronization domain separate from the created ob-
ject enables the object to service its clients more efficiently. Using
class factories to create objects provides a classic example of needing
to configure components to require a new synchronization domain.

60 VISUAL STUDIO MAGAZINE «

use this setting if you don’t care about having your objects in a
separate synchronization domain. Sometimes, however, you’ll want
to start a new domain.

Base your decision on whether your object requires a new
synchronization domain on the calling pattern to your object.
Consider a calling pattern in which you configure Object2 with
synchronization set to REQUIRED, and you place it in the same
synchronization domain as its creator, Object] (see Figure 3). In
this example, the two objects don’t interact past the point of
creation. While Client A is accessing Objectl, along comes Client B
on another thread, and it wants to call methods on Object2.
However, because Client B uses a different thread, NET blocks it,
even though it could have accessed Object2 safely, because it
doesn’t violate the synchronization requirement for the creating
object, Objectl.

Class Factories Need New Domains

On the other hand, if you were to configure Object2 to require its
own synchronization domain by using REQUIRES_NEW, the
object could process calls from other clients at the same time as
Objectl (see Figure 4). Using class factories to create objects
provides a classic example of needing to configure components to
require a new synchronization domain.

Class factories usually require thread safety because they service
multiple clients. Once a factory creates an object, though, it hands
the object back to a client and has nothing more to do with it. You
need to configure the objects to require a new synchronization
domain because you don’t want all the objects created by a class
factory to share the same synchronization domain.

However, calls from the creator object (Object1) to Object2 will
now potentially block and will be more expensive because the calls
must cross context boundaries and pay the overhead of trying to
acquire the lock. You can synchronize context-bound objects most
easily using .NET synchronization domains. These provide a mod-
ern synchronization technique that formally eliminates many syn-
chronization problems and the consequent need to code around
them, then test the handcrafted solution.

Synchronization domains provide a substantial productivity
gain, but you do need to consider four limitations. First, you can use
synchronization domains only with context-bound objects. All
other NET types require manual synchronization objects. Second,
you could have performance issues when you access context-bound
objects using proxies and interceptors in an intense calling pattern.
Third, synchronization domains don’t protect static class members
and static methods. Those require manual synchronization objects.
Finally, synchronization domains are not throughput-oriented. An
incoming thread locks a set of objects even if it interacts with only
one. This precludes other threads from accessing these objects, and
theoretically could degrade application throughput.

For balance, you must rely on synchronization domains and
other advanced component services in any decent-sized applica-
tion—or whenever productivity and quality are top priorities. vsm

Juval Léwy is a software architect and principal of 1Design, a
consulting and training company focused on .NET. This article
derives from his upcoming book on programming .NET components
(O'Reilly). Juval speaks at development conferences and chairs the
.NET California Bay Area User Group's program committee. Contact
him at www.idesign.net.

SEPTEMBER 2002 + www.visual

